首页
/
每日頭條
/
職場
/
數據分析與解決方案
數據分析與解決方案
更新时间:2025-12-05 06:38:15

數據處理是數據産品經理最為重要的一環,相比最後 報表展示、分析報告、數據驅動,這一環往往耗時長、體現價值低,卻牽一發而動全身。我們經常會聽到,同一個功能數據分析結果截然相反,追溯原因發現在數據處理過程中,存在錯誤等。

數據分析與解決方案(從數據産品經理視角)1

本篇文章将以數據産品的角度來看數據采集後數據流的處理過程;并講解一丢丢偏技術、但與數據産品産出息息相關的數據倉庫。

一. 數據處理過程

數據産品經理的工作中一大部分都是将不可估測的數據轉化為可見的報表、有結論意義的分析報告——也就是将數據從各種異構的數據源中、彙總,最終展示為報表、儀表盤、動态數據分析查詢、結論性的分析報告等等。

1. 有哪些異構數據源呢?

  • 服務端、客戶端用戶行為日志
  • 用戶的曆史信息,定性信息(e.g.性别,職業的用戶畫像數據),定量信息(e.g.近30天的某個興趣傾向程度)
  • 第三方等獲取的信息,e.g.爬蟲數據、人工整理的數據等等

2. 這信息大都需要二次加工、清洗,生成結構化的數據

  • 髒數據的清洗、整合,e.g.延遲數據的按照發生日歸納;
  • 生成基礎性的表,以提高數據的易用性,e.g.用戶基礎數據、行為數據的基礎表;
  • 生成可以直接應用于報表、分析的用戶&行為結構化業務應用表;

輕描淡寫的2個步驟,卻是影響報表展示、分析結論的關鍵點,也是數據産品經理最需要細心處理的地方。

二. 數據倉庫(Data Warehouse)

數據處理過程往往比較模糊,但“異構數據源->結構化的數據表->報表/分析報告”的過程中,我們常見的各種數據庫表就是數據倉庫的實體,如常見的hive,spark,Oracle等。那在數據産品經理日常數據處理中應該注意哪些數據倉庫知識點呢?

1. 數據倉庫分層

為什麼要做分層呢?

  1. 更清晰的管理、追蹤數據(清洗的數據結構、明确的血緣關系):有助于我們去查找數據處理的整條鍊路;
  2. 通過建立通用的中間表,減少重複計算:一張通用的中間表,能夠有效提供能夠直接貢獻于下遊業務數據表,以避免每次都從原數據中産出業務數據表;
  3. 清晰的數據倉庫分層,将能夠有助于我們分解數據處理過程:将複雜的數據->業務應用,拆解成多個步驟,每一層隻處理單一的步驟;

數據分層具體是指?每一層應該注意什麼呢?

操作數據層(ODS,Operational Data Store):該層級的數據,最接近數據源的原始面貌(内容和粒度與原始數據一緻),通常是數據源直接經過ETL後,存儲于此。從原始數據到ODS層,不建議做複雜的數據清洗,以免破壞原始數據,引起不必要的排查成本。

建議僅進行——

  • 将json記錄的日志,映射到各字段中;
  • 作弊數據的清洗;
  • 數據轉碼:将編碼映射成具有真實含義的值
  • 數據标準化,e.g.把所有的日期都格式化成YYYY-MM-DD的格式;
  • 異常值修複,e.g.視頻播放表:(包含用戶id、視頻id、播主、播放時間等)。

如果一個表劃分為ODS層,那麼一定要确認是否将原數據的有意義字段均清洗過來。

明細數據層(DWD,Data Warehouse Detail):對ODS層做一些業務層面的數據清洗和規範化的操作,e.g.用戶播放視頻的日志級表;

如果一個表劃分為DWD層,是否清晰、明确的記錄了業務層面的明細數據?

彙總數據層(DWS, Data Warehouse Summary):依據業務需求對ODS/DWD層的數據進行了彙總,e.g.帶有用戶畫像信息的播放視頻;

如果是DWS層的表,是否能夠有效、便利的服務于業務方向統計需求?

應用數據層(ADS,Application Data Store):業務需要進行的統計數據結果,e.g.各類型用戶的視頻播放統計。

如果是ADS層的表,是否能夠得到業務需要的統計數據?

維度表(DIM):存放基礎信息,如用戶屬性表-性别、年齡等等。

如果是DIM層的表,是否全面記錄了後續分析或統計需要用的各個維度?

除了固定為分層外,當然還有臨時表(TEM)。

數據分析與解決方案(從數據産品經理視角)2

阿裡/華為的數據倉庫數據分級:操作數據層(ODS)、明細數據層(DWD)、彙總數據層(DWS)和應用數據層(ADS),維度表(DIM); 操作數據層、明細數據層、彙總數據層都是公共數據層。

此外,涉及表時,需要充分考慮這張表後續是哪個角色的同學使用,表是否足夠易用?是否内容冗餘?是否安全?

  • 業務線的同學是否能夠通過幾條簡單的SQL語句,拿到數據結果?
  • 可以通過單張表格統計到數據還是需要多表關聯獲取?
  • 單張表是不是内容冗餘,是否會影響查詢效率?
  • 多表關聯時,是否會有業務理解上的坑,e.g.多表間的字段是一對一,一對多,還是多對多,如何讓使用者清晰的理解?
  • 表中是否涉及敏感的字段,比如金額等,使用群體是否有足夠的權限獲取這些信息?

2. 元數據管理

元數據及應用也是數據倉庫的重要組成部分,它是描述數據的數據(data about data),描述數據的屬性信息,可以幫助我們非常方便地找到他們所關心的數據。

元數據記錄了哪些信息?

  • 數據的表結構:字段信息、分區信息、索引信息等;
  • 數據的使用&權限:空間存儲、讀寫記錄、修改記錄、權限歸屬、審核記錄等其他信息;
  • 數據的血緣關系信息:血緣信息簡單的說就是數據的上下遊關系,數據從哪裡來到哪裡去?我們通過血緣關系,可以了解到建立起生産這些數據的任務之間的依賴關系,進而輔助調度系統的工作調度,或者用來判斷一個失敗或錯誤的任務可能對哪些下遊數據造成影響等等;而在數據排查過程中也可以幫助我們定位問題。
  • 數據的業務屬性信息:記錄這張表的業務用途,各個字段的具體統計口徑、業務描述、曆史變遷記錄、變遷原因等。這部分數據多是我們手動填寫,但卻能大大提升數據使用過程中的便利性。

3. 離線數據倉庫&實時數據倉庫

此外,根據數據實時性,數據倉庫可以分為離線數據倉庫、實時數據倉庫。

  • 離線數據倉庫主要記錄t-1以上的數據,以天、周、月數據計算為主;
  • 實時數據倉庫是随着人們對實時數據展示、分析、算法的需求而出現的。

4. 總結

數據處理過程是數據産品經理 産出報表、分析報告耗時最久的部分,了解數據倉庫的概念&關鍵點,有助于我們清晰、有效的處理數據,提高工作效率,将更多的時間用于業務洞察。

相關數據産品文檔:

  1. 埋點技術
  2. 埋點通用的事件模型

本文由 @ cecil 原創發布于人人都是産品經理。未經許可,禁止轉載

題圖來自 Pexels,基于 CC0 協議

,
Comments
Welcome to tft每日頭條 comments! Please keep conversations courteous and on-topic. To fosterproductive and respectful conversations, you may see comments from our Community Managers.
Sign up to post
Sort by
Show More Comments
推荐阅读
剛入行的職場新人應該注意什麼
剛入行的職場新人應該注意什麼
剛入行的職場新人應該注意什麼?不要随便聽信同事的茶餘飯後,也不要和同事讨論老闆的不是,不要說同事的壞話,隻要你說了,用不了幾天就能傳到老闆和那個同事的耳朵裡,這是不可避免的有些人能在你面前說别人的不是,就能在别人面前說你,下面我們就來聊聊關...
2025-12-05
開心工作的正能量句子
開心工作的正能量句子
開心工作的正能量句子?樂觀本身就是一種成功烏雲後面依然是燦爛的晴天,今天小編就來說說關于開心工作的正能量句子?下面更多詳細答案一起來看看吧!開心工作的正能量句子樂觀本身就是一種成功。烏雲後面依然是燦爛的晴天。奮鬥者在汗水彙集的江河裡,将事業...
2025-12-05
dnf各個職業技能
dnf各個職業技能
在所有的職業有的是依靠本身實力将其發揮到極緻,也有的職業是依靠外物從而獲得特殊能力,這種能力往往擁有強大的背景故事,實力完全高于普通的使徒。如果将這幾種能力聯合起來就算是使徒也不足為懼。接着來讓我們看看各職業到底擁有什麼樣的特殊能力吧!魔人...
2025-12-05
抖音創始人張一鳴創業曆程
抖音創始人張一鳴創業曆程
抖音創始人張一鳴創業曆程?朋友小陳做HR三年了,一直維持着基本工資6000的水平雷打不動,現在小編就來說說關于抖音創始人張一鳴創業曆程?下面内容希望能幫助到你,我們來一起看看吧!抖音創始人張一鳴創業曆程1事務性工作的死循環朋友小陳做HR三年...
2025-12-05
離職了社保怎麼辦
離職了社保怎麼辦
離職了社保怎麼辦?已經離職的,原公司就不會繼續交社保了,原單位會去社保局辦理減員手續,這樣社保就自動封停但是辭職後的社保是可以辦理轉移、轉出的,我來為大家科普一下關于離職了社保怎麼辦?下面希望有你要的答案,我們一起來看看吧!離職了社保怎麼辦...
2025-12-05
Copyright 2023-2025 - www.tftnews.com All Rights Reserved